## FerriL: Feature Translation for Exemplar-Free Class-Incremental Learning Grégoire Petit<sup>1/2</sup>, Adrian Popescu<sup>1</sup>, Hugo Schindler<sup>1</sup>, David Picard<sup>2</sup>, Bertrand Delezoide<sup>3</sup> AMAAAAA

Motivation & directions

- Class-Incremental Learning: data arrives sequentially (e.g.  $[C_0, C_1, ..., C_9]$ , then  $[C_{10}, C_{11}, ..., C_{19}]$ , etc.)
- Exemplar-Free: No possibility to store previously seen data (i.e. no rehearsal memory)
- Generation via geometric translation of pseudo features for past classes in each new state



FeTrIL overview. Average KL-divergence between distributions, depending on their neighboring rank.



Pseudo-features generation procedure. Toy example with three states (one initial and two incremental) in (a), (b) and (c). (d) provides the actual features of all four classes

| Results              | CIFAR-100   |             |             |             | TinyImageNet |             |             |             |             | ImageNet-Subset |             |             |             | ImageNet    |             |  |
|----------------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-----------------|-------------|-------------|-------------|-------------|-------------|--|
|                      | T=5         | T=10        | T=20        | T=60        | T=5          | T=10        | T=20        | T=100       | T=5         | T=10            | T=20        | T=60        | T=5         | T=10        | T=20        |  |
| DeeSIL (ECCVW'18)    | 60.0        | 50.6        | 38.1        | х           | 49.8         | 43.9        | 34.1        | x           | 67.9        | 60.1            | 50.5        | х           | 61.9        | 54.6        | 45.8        |  |
| PASS (CVPR'21)       | 63.8        | 61.8        | 58.1        | x           | 49.6         | 47.3        | 42.1        | x           | 64.4        | 61.8            | 51.3        | x           | -           | -           | -           |  |
| IL2A (NeurIPS'21)    | <u>66.0</u> | 60.3        | 57.9        | x           | 47.3         | 44.7        | 40.0        | x           | -           | -               | -           | x           | -           | -           | -           |  |
| SSRE (CVPR'21)       | 65.9        | <u>65.0</u> | 61.7        | x           | 50.4         | 48.9        | 48.2        | x           | -           | 67.7            | -           | x           | -           | -           | -           |  |
| FeTrIL <sub>fc</sub> | 64.7        | 63.4        | 57.4        | <u>50.8</u> | <u>52.9</u>  | <u>51.7</u> | <u>49.7</u> | <u>41.9</u> | <u>69.6</u> | <u>68.9</u>     | <u>62.5</u> | <u>58.9</u> | <u>65.6</u> | <u>64.4</u> | <u>63.4</u> |  |
| FeTrIL               | 66.3        | 65.2        | <u>61.5</u> | 59.8        | 54.8         | 53.1        | 52.2        | 50.2        | 72.2        | 71.2            | 67.1        | 65.4        | 66.1        | 65.0        | 63.8        |  |

Benchmark of FeTrIL against the state-of-the-art methods that have results. We notice, in bold, that although FeTrIL is very simple, it is really performing. It should also be noted that in the case of one-class incremental learning FeTrIL works and is also very efficient and not very sensitive to catastrophic forgetting.

Conclusion

FeTrIL advantages:

- Embeddable since it has low requirements in terms of computation and memory
- Much simpler and more effective than mainstream distillation-based methods
- Usable for one-class incremental steps
- Performance close to that of exemplar-based methods

FeTrIL limitations:

- Dependent on the domain shift between the initial fixed model and subsequent data
- Initial classes are favored over the rest since the fixed model is trained with them
- The pseudo-feature generator could be learned for a more refined representation of past classes

